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21.1 INTRODUCTION

In biology, the term "ome generally refers to the entirety or
totality of a collection of specific things. For example, a
biome is a collection of living organisms, and a genome
refers to the collection of genes within a single organism.
’Omics, then, are fields of study that deal with these collec-
tions and involve the characterization and consideration of
multiple molecules simultaneously. When botanist Hans
Winkler proposed the term “genome” to describe a collec-
tion of chromosomes in the 1920s, he probably had no idea
how widely the ’ome suffix would come to be used. We
commonly study genomes of individual organisms or the
metagenomes of communities in order to: (1) understand
functional potential; (2) discern phylogenetic relationships;
and (3) evaluate heredity (e.g., horizontal gene transfer) at
the DNA level. The ’omics concept extends well beyond
DNA, however, and can include RNA transcripts, proteins
and metabolites, and these are often referred to as the
“omics cascade (Figure 21.1). In this cascade:

e The genome (or metagenome) contains information
about what can happen (i.e., functional potential);

e The transcriptome (or metatranscriptome) contains
information about what appears to be happening (i.e.,
which genes are being expressed);

e The proteome (or metaproteome) contains information
about the molecules that make things happen; and

e The metabolome contains information about what has
happened recently or is currently happening.

Although the *omics cascade captures many of the major
"omics disciplines under study today, a variety of other
’omics have emerged in recent years. Some are subdisci-
plines of the major *omics fields mentioned above (e.g., gly-
comics, lipidomics, interactomics), while others remain
emerging concepts, and have yet to be embraced as stand-
alone disciplines in mainstream science.

In addition, the field of bioinformatics has developed to
provide the statistical and computational approaches neces-
sary for evaluating the increasingly large and complex
datasets that ’omics technologies are producing. In fact,
with the rapid expansion in technologies such as DNA
sequencing, the analysis and interpretation of *omics data-
sets are often the most challenging parts of “omics -based
experiments. In this chapter, we will discuss the primary
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’omics-based methods currently being used to characterize
environmental microorganisms, and also approaches for
analyzing and interpreting the “bioinformation” that these
studies generate.

21.2 GENOMICS AND COMPARATIVE
GENOMICS

The term genome describes the total collection of an organ-
ism’s hereditary information. Genomes are often encoded as
DNA and stored in chromosomes, mitochondria, plasmids
and/or chloroplasts. However, for many viruses, the genome
is composed of RNA only. Advances in DNA sequencing
technologies have resulted in the ability to produce vast
amounts of sequence information. Where sequencing was
once limited to specific gene targets or relatively short
DNA fragments, it is now routinely applied to whole gen-
omes. The first whole genome sequence of a free-living
organism, Haemophilus influenzae, was completed in 1995
(Fleischmann et al., 1995). According to the Genomes
Online Database (GOLD, see Table 13.2) as of July 2013,
nearly 7000 genomes had been sequenced (in complete or
draft stage), and thousands more were listed as ongoing pro-
jects. The availability of such large quantities of genome
sequence information has spawned a field of study known
as comparative genomics. Comparative genomics studies
seek to identify similarities and differences in the genes and
gene content of various organisms, and a variety of data
management systems and analysis platforms have evolved
aid in these efforts. The Joint Genome Institute (JGI) pro-
vides such a platform in their Integrated Microbial
Genomes (IMG) system (Markowitz et al., 2010).

By examining the similarities and differences among
genomes, comparative genomics attempts to draw infer-
ences with respect to the function of particular genes, iden-
tify regulatory regions and find evidence of evolution and/
or genetic exchange, by providing insights into the mobility
of chromosomal sections and lateral gene transfer. For

currently happening

example, bacterial and archaeal thermophiles often share
the same habitats, and there is abundant evidence from
genomic analysis that lateral gene transfer is common in
the group. Specifically, the Thermotoga maritima genome
has been estimated to have approximately 20% of genes
that have primary homology to hyperthermophilic
Archaea, principally Pyrococcus spp. (Nelson et al., 1999).
When comparative genomic approaches were used to study
the thermophilic carboxydotroph, Carboxydothermus
hydrogenoformans, a variety of interesting features, includ-
ing conserved genes involved in sporulation and a
Rhodosporillum rubrum-like carbon monoxide dehydroge-
nase operon, were discovered (Wu er al., 2005). In addi-
tion, it was revealed that approximately 30% of the open
reading frames in the genome have high similarity to genes
in methanogenic Archaea. This observed sequence similar-
ity has led researchers to hypothesize that extensive lateral
genetic exchange has occurred between C. hydrogenofor-
mans and methanogens (Gonzdlez and Robb, 2000). The
close association of methanogens and carboxydotrophic
bacteria in the environment suggests that at the very least
there is a high potential for exchange of metabolites
between the two groups. These examples illustrate the
power of comparative genomics in taking nucleic acid
sequences and inferring functionality of individual genes
as well as potential interactions and genetic exchanges
between members of a particular microbial community.

An emerging area of comparative genomics is single-
cell genomics (Laskin, 2012). One of the major benefits
of nucleic acid-based methods is the ability to circumvent
the need to culture microorganisms before they can be
characterized, thus enabling the characterization of diffi-
cult-(or impossible)-to-culture microorganisms. However,
when applied to environmental samples containing
diverse communities of microorganisms, these approaches
can usually only provide information for a handful of
genes (e.g., 16S rRNA), or at best partially assembled
genomes for the most dominant organisms in the samples.
However, new techniques such as microfluidics and
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microencapsulation are allowing researchers to isolate
and grow individual microorganisms (Zengler et al.,
2005; Wessel et al., 2013). When combined with whole-
genome amplification methods, these approaches are now
enabling researchers to obtain sufficient DNA from one
initial microbial cell to determine its entire genome, and
thus get a better understanding of its potential environ-
mental function—without ever isolating it on traditional
laboratory media (Figure 21.2)! This is particularly pow-
erful when used in combination with other methods such
as FISH (Section 13.3.5) to target and select for specific
groups of microorganisms that may be less abundant and
thus would largely be missed with shotgun sequencing-
based metagenomics approaches (Podar et al., 2007).

21.3 METAGENOMICS

As discussed in Section 13.6.2, the term metagenomics
was first coined by Handelsman er al. (1998) in reference

Extraction of

microorganisms
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to the collective gene content of a community of microor-
ganisms (e.g., those in a soil sample). The definition of
metagenomics has since been expanded by the scientific
community to generally include any technique that is based
upon analysis of DNA extracted from environmental sam-
ples. This broader definition of metagenomics would
include 16S rRNA sequencing and related phylogenetic
fingerprinting techniques; however, it should be noted that
some researchers do not consider these methods (e.g., 16S
rRNA sequencing) to be true “metagenomic” techniques.
Over the past two decades, metagenomics-based assays
have become the standard for characterizing microbial
communities, and have been used in countless studies to
determine the structure, function and metabolic potential of
microbial communities in a wide variety of environments
(Table 19.1). The largest application has been 16S rRNA
gene sequencing for determining bacterial diversity and
community composition, although a variety of other
marker genes have been used, and an increasing number of
studies are randomly sequencing environmental DNA.

FIGURE 21.2 Overview of a single-cell
genomics-based approach for characterizing the
genomes of environmental microorganisms.
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The ability of metagenomics-based methods to characterize
environmental microorganisms without having to first iso-
late and culture them has allowed the discovery of many
previously unknown microorganisms and elucidation of
their environmental functions, such as the major contribu-
tions of Archaea to ammonia oxidation in a variety of eco-
systems (Section 4.4.3).

Although earlier metagenomics studies began with clon-
ing environmental DNA into vectors prior to functional
analysis or DNA sequencing, most metagenomics studies
today go directly from DNA extraction to sequencing
(Figure 13.13). If specific genes are targeted (e.g., 16S
rRNA), they can be amplified prior to sequencing (see
Section 13.4). Alternatively, the extracted DNA can be
sequenced without amplification of any specific genes. This
approach is often described as shotgun sequencing. In this
process, community DNA is extracted and fractionated into
small pieces (if necessary) and sequenced directly via high-
throughput sequencing (e.g., 454, [llumina and similar plat-
forms). Following sequencing and processing for quality
control (see Section 21.7.1), the reads are either: (1) directly
compared to databases for taxonomic and/or functional
annotation; or (2) assembled together into longer stretches
of DNA which can provide better information since they
then represent larger portions of the genome(s) (see
Section 21.7.2). Commonly used databases include those
available from the National Center for Biotechnological
Information (NCBI) and the Metagenomics Analysis Server
(MG-RAST) (Section 21.7.2.3; Table 21.1). If higher-order
functional identification is required, genes can be categorized
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using a database such as the Kyoto Encyclopedia of Genes
and Genomes (Kanehisa er al., 2004); such databases facil-
itate identification of specific functional and enzymatic
pathways. At the moment, the assembly of metagenomics
data from environmental samples is extremely challenging
due to the complexity of microbial communities in these
environments, and the lack of a good set of reference
sequences from a diverse microbial community to serve as
a scaffold for assembling the sequences (Thomas ef al.,
2012). In general, assembly of metagenomics data is lim-
ited to only extremely dominant members of simple com-
munities such as those in acid mine drainage (Case Study
21.1 and Figure 21.3; Tyson et al., 2004) or contaminated
groundwater (Hemme ef al., 2010). Another challenge for
assembly is the relatively short read-lengths (<500 bp) of
many currently used sequencing methods. This not only
makes assembly more difficult, but it also makes direct
annotation of the reads more difficult since they often con-
tain only partial gene sequences. However, the develop-
ment of newer sequencing technologies, such as that of
Pacific Biosciences, promise the ability to provide longer
reads (>3000 bp) that will encompass entire genes, and
possibly even operons, and will thus allow for better
taxonomic classification and/or functional prediction.
Additionally, the large sequence datasets produced can be
computationally challenging to analyze. However, a vari-
ety of analysis pipelines and software programs have been
developed, and are continually being updated, that facili-
tate and are standardizing the processing and analysis of
these types of datasets (see Section 21.7).

e

Case Study 21.1 Metagenomics-based Characterization of Dominant Microorganisms in an Acid Mine Drainage Biofilm

\

One of the first studies to reconstruct putative genomes of environ-
mental microorganisms solely from metagenomic sequence data
was the work by Tyson et al. (2004) on an acid mine drainage com-
munity in California, U.S.A. Although the site was extremely acidic
(pH 0.83), an extensive biofilm existed on the surface of water from
the mine. Using fluorescence in situ hybridization (FISH) and 16S
rRNA sequencing, the scientists determined that the biofilm com-
munity was relatively simple, and was dominated (~75% of com-
munity) by a single group of related bacteria, Leptospirillum group
1I. The scientists then cloned and sequenced the extracted DNA fol-
lowed by assembly of the reads. Due to the simplicity of the biofilm
community, the sequences were successfully assembled into near-
complete genomes for two groups of Bacteria and Archaea:
Leptospirillum group II and Ferroplasma type II (Figure 21.3), as well
as partial assembly of three other genomes. Both of the near-
complete genomes contained putative genes commonly found in
microorganisms living in similar, extreme sites including genes for
efflux of heavy metals and various other detoxification mechanisms.
A number of novel cytochrome genes, which were potentially

involved in iron oxidation, were also detected. Since the site was in
the deep subsurface, it received little-to-no inputs of carbon and
nitrogen from the surface, and therefore would require at least some
of the members of the microbial community to fix both carbon and
nitrogen. Genes for carbon fixation were found in the Leptospirillum
group II genome, but Ferroplasma type Il appeared to require exter-
nal sources of carbon. Interestingly, neither Leptospirillum group 1I
nor Ferroplasma type 1I contained genes for nitrogen fixation, sug-
gesting that other members of the community most likely fulfilled
this vital role for the community. The metagenomic sequencing data
from this study provided some initial insights into the metabolism
of dominant microorganisms in the biofilm community. In addition,
the biofilm is an ideal model community since it is: (1) a relatively
simple community dominated by a few microbial populations; and
(2) contains a large amount of biomass per unit volume. This
enabled a variety of other ‘omics methods including transcriptomics
and proteomics to be used to validate and expand insights into the
ecology of the acid mine drainage biofilm community.
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FIGURE 21.3 Metagenomic reconstruction of microbial metabolism in an acid mine drainage community. Constructed from the annotation of 2180 ORFs identified in the assembled Leptospirillum
group II genome (63% with putative assigned function). The cell diagram is shown within a biofilm that is attached to the surface of an acid mine drainage stream (viewed in cross-section). From

Tyson et al. (2004).
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Despite the unprecedented insight that metagenomics is
allowing into the diversity, structure and genetic potential
of microbial communities, it should be recognized that the
function of genes, from metagenomics data, is inferred
bioinformatically rather than tested empirically. However,
this initial characterization and prediction of a microbial
community’s genomic capabilities can serve as the platform
for further characterization using other additional ’omics-
based assays such as transcriptomics and proteomics, which
can verify whether these putative genes are expressed and
produce the predicted proteins (Case Study 21.1).

21.4 TRANSCRIPTOMICS

Modern genomic techniques such as metagenomics yield
vast amounts of data; however, this data represents the DNA
potential of a biological system, not necessarily the
expressed phenotype. To unlock the expressed fraction of
genomics, one must turn to RNA or protein expression, tran-
scriptomics (a.k.a. metatranscriptomics) and proteomics,
respectively. Since RNA, specifically mRNA, represents the
product of DNA transcription, it is a logical target for
transcriptomics-based analyses. Many metatranscriptomics
analyses are less hypothesis driven and may be considered
more exploratory in nature. Conversely, some transcrip-
tomics studies focus investigation on expression of targeted
genes, and additionally rely on other ’omics to complete the
picture (see Case Study 21.2). A number of studies applying
transcriptomics to various environmental matrices are
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available for more in-depth discussion beyond the scope of
this section: Carvalhais er al. (2012) (review of transcrip-
tomics and soil); de Menezes et al. (2012) (transcriptomics
and organic contaminant degradation); and Kyle er al.
(2010) (transcriptomics applied to E. coli survival on food).

Overall, transcriptomics analyses have been conducted
on a number of sample matrices. Much of the original
transcriptomics work was conducted with clinical fecal
samples (Gosalbes er al., 2011), which given similar
caveats as environmental samples, provided for an appli-
cable template for the analysis of soil, water and plant
rhizosphere matrices. Much like sample collection for
DNA, care must be taken when collecting mRNA; how-
ever, mRNA is notoriously labile. mRNA will typically
persist in an environmental sample for no more than a
few minutes following collection. Additionally, the
mRNA half-life may vary for different environments and
microorganisms, and by gene function, with house-
keeping genes yielding more stable mRNA products
(Selinger et al., 2003). For this reason, samples must be
preserved within minutes, if not seconds, of collection.
There are a number of collection protocols, including
commercial kits (easily standardized) and “homemade”
traditional approaches, which often yield larger quantities
and higher quality RNA, though standardization may be
more difficult if conducting latitudinal studies.

Often, sample collection involves immediate freezing
in liquid nitrogen in order to prevent enzymatic RNA
degradation. While this may be possible when working in
a laboratory or greenhouse environment, it may not be

-

Case Study 21.2 Combining ’Omics: Metatranscriptomics and Metabolomics

\

Combining ’omic analyses yields more useful data than a single
analysis in many cases. For example, the application of transcrip-
tomics- and metabolomics-based analyses can reveal the relation-
ships between genes and their final functional activity. At the
most basic level, one analysis may provide useful insight while
the other may not; a more complex analysis may reveal intricate
relationships between transcriptional control and metabolic func-
tion. A study by Ishii et al. (2007) aimed to marry the two analy-
ses in the study of common environmental (substrate abundance
and reduction) and genetic (missing enzymatic pathways) pres-
sures imposed on Escherichia coli K-12. Global responses were
measured using a combination of qRT-PCR (quantitative real-time
PCR) to measure targeted mRNA transcripts, and liquid chroma-
tography and time-of-flight mass spectrometry to measure meta-
bolome response. Additionally, DNA microarrays and 2D-
differential gel electrophoresis were used to measure relative gene
and protein expression, respectively. From these data, the scien-
tists generated an expression index, which took data, separately,
from each analysis type and scaled the responses to permit com-
parisons across all analyses. The analyses revealed gradual
increases in mRNA and protein levels using both targeted and

global analyses when placing E. coli under high growth rate con-
ditions. Interestingly, metabolites did not significantly increase.
Reducing substrate availability additionally demonstrated few
changes in metabolites compared to the control. Finally, the
authors disrupted the enzymatic network by disrupting individual
genes; but only subtle changes were noted in mRNA and protein
expression of central carbon enzymatic pathways. The study dem-
onstrated two approaches which allow E. coli to quickly react to
genetic and environmental changes. The results of the study sug-
gest that E. coli has built-in structural redundancy (in enzymatic
pathways), which absorbs sudden changes in available substrate
as well as loss of single gene function. Results also suggest that
E. coli maintained the same metabolic rate (as demonstrated by
metabolomics) while up-regulating enzyme expression (as dem-
onstrated by targeted and global transcriptomics). This study
demonstrates the stability that E. coli’s enzymatic pathways pro-
vide along with the ability to rapidly respond to environmental
pressures. Discovery of this information was only made possible
through use of the multiple ‘omics approach, in which one assay
demonstrated changes in the system, while the other assay was
incapable of detecting responses.

J
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feasible for environmental work. These situations may
necessitate the use of RNA stabilizing buffers such as the
MO BIO LifeGuard™ Soil Preservation Solution (MO
BIO Laboratories, Inc., Carlsbad, CA). These buffers
facilitate the collection of mRNA from environmental
samples with immediate preservation while in the green-
house or field. While this step preserves the total RNA in
a biological system, the extraction of RNA from intact
cells is still necessary prior to analysis. As with DNA
extraction procedures, most RNA extraction from com-
mercial kits involves bead-beating technology and the
capture of RNA in a stable buffer which can be frozen
and subsequently analyzed. However, copurifying soil
and fecal humic acids and contaminating organic mole-
cules and metals can affect the quality of the final RNA
products (see Chapter 8).

Once mRNA is safely collected and preserved, it
needs to be converted to cDNA (complementary DNA;
Section 13.4.5). However, mRNA is often present as a
small fraction of the total RNA (mostly rRNA and
tRNA). Therefore, mRNA is often enriched or selectively
isolated from total RNA. As with sample collection and
RNA extraction, there are a number of commercial
approaches available, including the use of exonuclease
treatment (targeting rRNA), and subtractive hybridization
using magnetic beads coupled with oligos specific for
rRNA and tRNA, which are subsequently removed from
the solution. However, in environmental and clinical sam-
ples, eukaryotic mRNA may be present at high levels; in
these cases, eukaryotic mRNA can be removed by target-
ing mRNA containing 3’ poly-A tails (Bailly er al., 2007).
Following mRNA enrichment, cDNA is most often the
template of choice for most downstream applications. In
these cases, reverse transcriptase and either specific pri-
mers or random oligos are applied, as in most other meth-
ods requiring cDNA synthesis (see Section 13.4.5).

As with DNA metagenomics work, the choice of the
sequencing system depends on the length of the intended
sequence product and anticipated coverage needed for a
specific biological system. Currently, most metatranscrip-
tomics work is conducted using 454 or Illumina systems,
the former producing larger sequence products (=~ 500 bp),
while the latter provides for smaller sequences (= 150 bp),
but a larger number of products (<1 Gb vs. 600 Gb). Each
system satisfies different study objectives as longer reads
are used to map repetitive sequence regions, while some
studies require deeper coverage depth. As sequencing
methods continue to develop, other platforms will likely be
adopted for use in metatranscriptomics.

Following sequencing, bioinformatic analysis removes
poor quality and short read sequences. Sequence ends are
also trimmed and data analyzed for the presence of rRNA
sequences (which can still be present, despite mRNA
enrichment), which are promptly removed from the library.
Typically, sequences are compared to available databases
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which assign gene function and identification. However,
most metatranscriptomic projects include comparisons of
gene relative frequency, and whether a gene is up- or
down-regulated. In this case, gene frequencies are normal-
ized to gene abundances from a control metagenome, pref-
erably from the same environmental matrix. Similarly,
control metatranscriptomes allow for comparison to treated
samples or to various time points, depending on the study
objectives. As with metagenomic work, assembly may also
be necessary, though the complexity of environmental sam-
ples may prohibit this. Various assemblers are available
and consist of programs commonly employed in metage-
nomic work such as Genovo (Laserson et al., 2011) and
Newbler (454 Life Sciences, Branford, CT, U.S.A.). A
transcriptomic specific assembler such as Velvet (Zerbino
and Birney, 2008) can also be used (see Section 21.7 for
additional details on bioinformatics).

21.5 PROTEOMICS

Although DNA- and RNA-based methods can provide tre-
mendous insights into the environmental roles of microor-
ganisms, proteins, not genes, are directly responsible for
the majority of microbial processes. Therefore, measure-
ment of these proteins (i.e., enzymes) can provide a more
direct measurement of microbial activity. The proteins
produced by a given microorganism under a given set of
conditions are collectively referred to as the proteome. In
contrast to the genome, the proteome is much more vari-
able (like the transcriptome) with different proteins being
produced depending upon the stage of cell metabolism
and the environmental stimuli present.

Studying the proteome has the potential to provide
unique information about cell function, and the mechan-
isms behind cell responses to different stimuli.
Specifically, proteomics-based approaches allow identifi-
cation of proteins that are differentially expressed and,
thus, likely to be important in the microbial response to
environmental conditions. Proteomics-based studies of
environmental effects on microorganisms typically
involve the following:

e Exposure of microorganisms to a condition of interest
e Isolation of proteins from each population

e Separation of proteins

e Protein identification

The first two steps in proteomics-based studies are
relatively easy. There are a host of effective methods
available to isolate and purify the heterogeneous protein
mixtures made by microorganisms. However, separating
the proteins contained within these complex mixtures
represents one of the most challenging aspects of
proteomics. Two strategies to separate proteins are
commonly used: two-dimensional polyacrylamide gel
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electrophoresis (2D-PAGE) and liquid chromatography-
mass spectrometry (LC-MS). In 2D-PAGE, proteins are
first separated according to their isoelectric points (pl), the
pH at which the protein has no net charge. The second
dimension of 2D-PAGE separates proteins based on their
masses using a polyacrylamide gel. The resulting gel con-
tains many spots, each ideally containing a single protein
that can be identified using mass spectrometry-based
methods described below.

Alternatively, LC can be used for protein separation. In
this approach, proteins from a given population are pooled
and digested enzymatically into their constituent peptides.
These peptides are separated by LC (see Section 11.2.1.1)
which allows for the separation of molecules based on
charge or hydrophobicity. Proteins in the original popula-
tion of cells are identified on the basis of these peptides as
described below. LC-based separation of proteins can be
more readily automated, and may be more reproducible
than 2D-PAGE.

Once separated, proteins must be identified to gain
insight into mechanisms by which microorganisms interact
with the environment. Mass spectrometry is currently the
tool of choice for this task. Intact proteins are broken
down enzymatically (i.e., digested) into smaller peptides
and analyzed by mass spectrometry. Once accurate masses
of the peptides are obtained, the protein from which the
peptides originated can be identified. This approach to
protein identification is known as peptide mass finger-
printing (PMF). When PMF fails, other types of mass
spectrometry can be used to obtain direct amino acid
sequence data that can be useful for protein identification.
As differentially expressed proteins are identified, the
investigator gains insight into mechanisms by which the
microorganism responds to a particular environmental
condition (Westermeier and Naven, 2002).

Studies have demonstrated that the comprehensive,
high-throughput nature of proteomics-based approaches is
also well suited to elucidating biodegradative pathways.
For example, Kim er al. (2004) examined biodegra-
dation pathways of an aromatic-degrading pseudomonad
(Pseudomonas sp. K82) using 2D-PAGE followed by
mass spectrometric identification of proteins. Using this
approach, the investigators discovered three metabolic
pathways, each of which was induced to a different
degree by three different aromatic compounds.

As with recent research in metagenomics, applications
of proteomics to microbial ecosystems are emerging and
offer promise to link microbial species within complex
communities to function (Hettich er al., 2013). Termed
metaproteomics or community proteomics, these
approaches are designed to isolate as many proteins as
possible from a microbial community to learn more about
which microorganisms perform what tasks within a com-
munity (Figure 21.4). For example, Ram et al. (2005)
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used metaproteomics to investigate and characterize an
acid mine drainage biofilm community similar to the one
described in Case Study 21.1 and Figure 21.3. As with
most proteomics-based approaches, this approach was
facilitated by genomic sequence data (Figure 21.5).
Specifically, the authors constructed a database of 12,148
predicted protein sequences from the similar biofilm com-
munity previously characterized using metagenomics
(Tyson et al., 2004). Using this database and an LC-mass
spectrometry approach to protein identification, the
authors identified 2033 individual proteins. Most were
produced by members of the genus Leptospirillum and
were involved with adaptation to this extremely acidic
(pH~0.8), metal-laden environment. Many proteins
could not be assigned a function, yet were highly preva-
lent. One of these, which was previously identified by the
metagenomics approach as possibly playing a role in iron
oxidation, was confirmed to be a novel cytochrome
involved in iron oxidation and acid mine drainage forma-
tion. A subsequent study found that the proteome changed
during development of the biofilm (Mueller ez al., 2011).
For example, the dominant organism, Leptospirillum
group II, produced more enzymes for metabolism of
1- and 2-carbon compounds and protein synthesis during
early biofilm development, and more stress-related and
iron oxidation proteins, likely related to acid mine drain-
age formation, as the biofilm developed and resources
likely became more limiting (Figure 21.6).

Despite the promise of metaproteomics, many impedi-
ments to its broader use exist. The need for a universal
method to exhaustively extract proteins from complex
communities, particularly those indigenous to soil, is of
paramount importance. In addition, the sensitivity of
detection of existing methods is limited, and approaches
are only capable of identifying proteins from microbial
populations that comprise >1% of a community.
Furthermore, additional metagenomics data are needed in
order to better predict the suite of proteins produced by
environmental microbial communities and accurately
interpret metaproteomics data (Figure 21.5). Nevertheless,
metaproteomics is a developing and promising area of
research, and will likely be increasingly used over the
next decade to study the activity and functions of environ-
mental microorganisms.

21.6 METABOLOMICS

Metabolomics consists of the study of low molecular
weight metabolites. Environmental metabolomics consists
of metabolites produced by interactions between microor-
ganisms, small eukaryotes, plants, animals, predators and
the presence of abiotic pressures and stimulants.
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il288945811 | 526 58041 6.1 29 ickel D oides sp. GT] spectra from the E ”

ot metagenome g

Proteome characterization of the sample <+ <+ 3

2. Filter peptides and
computationally
assemble into proteins

e 3 ¥ ¥ 3

FIGURE 21.4 Experimental flowchart for sample preparation and measurement in a metaproteomics experiment. Sample collection and
processing steps must be optimized to match the nature of the material to be analyzed, in terms of biomass amount and complexity, matrix
composition, sample heterogeneity, etc. The resulting proteome sample is digested with trypsin and loaded onto a biphasic HPLC column for
concomitant 2D-separation and MS analysis via nanoelectrospray-based ionization of eluting peptides. Acquisition of parent peptide ion
(MS1) mass and fragmentation (MS/MS or MS2) information provides an experimental dataset containing hundreds of thousands of spectra
that can be computationally matched to the predicted proteome obtained from metagenomics information. From Hettich er al. (2013).

Common metabolites (=1500 Da) consist of organic
acids (e.g., glycolytic intermediates), amino acids (e.g.,
protein intermediates) and various saccharides (e.g.,
monosaccharides and cleaved sugars).

As with genomics, transcriptomics and proteomics stud-
ies, the goal of metabolomics is often to elucidate the func-
tion of a microorganism or microbial community; however,
proteomics and metabolomics reveal information related to
the “final” genome product. Similarly, metabolomics char-
acterizes the interactions between microbial constituents
and their environment, or between microbial and other
higher-order ecological organisms such as plants and ani-
mals. Metabolomics has been used as an exploratory tool
(Dunn, 2008), to uncover the functional status of microbial
populations and single cells in their environment, revealing
community and ecological structure. Targeted metabolo-
mics enables the user to focus upon a specific metabolite,
for instance when a treatment may dictate the up- or down-
regulation of a product, while global metabolomics views
the biological system and its metabolites as a whole. A
number of studies or reviews describing metabolomics and
various environmental matrices are listed for further
information beyond the scope of this section: Zhang et al.
(2010) (review); Ito et al. (2013) (contaminated feedstock);

Liebeke er al. (2009) (benchtop single culture study); and
Bundy et al. (2009) (review).

Metabolites are broken down into two groups: the
endometabolome and exometabolome, which are metabo-
lites contained intracellularly and extracellularly, respec-
tively. Like transcriptomics, the study of intracellular
metabolites can be more difficult, as these molecules are
more fleeting and in a constant state of flux. Metabolome
complexity and study objectives involving intra- or extra-
cellular metabolites determine the type of extraction and
processing. Once metabolites are extracted, they are sub-
jected to identification with a number of instruments such
as gas and liquid chromatography-mass spectrometry,
Raman spectroscopy and nuclear magnetic resonance
(NMR). In many instances, depending on the complexity
of the biological system, the study will call for a combi-
nation of two or more of these instruments (Dunn, 2008;
Case Study 21.2).

Regardless of platform, a large amount of metabolic
data is typically generated. In many instances, the metabo-
lites under investigation are unknown and global in per-
spective; therefore, query databases are required to deduce
the function and purpose of the metabolite. Metabolites are
often identified as products or intermediates of environmental
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FIGURE 21.5 Integrated use of metagenomics and metaproteomics for characterizing microbial communities. DNA is extracted from

biological samples, fragmented and sequenced. The resulting sequence reads are then assembled and/or binned. After gene annotation,
the protein-sequence database is constructed and an in silico trypsin digest is performed on the predicted proteins, resulting in a peptide
database (top). From the same or similar biological samples, total community protein is extracted and then digested using trypsin.
Peptide separation by two-dimensional (2D) nano-liquid chromatography (LC) and tandem mass spectrometry (MS/MS) is performed
(see Figure 21.4). The spectra are matched to peptides in the database, and after filtering, a list of identified peptides is obtained. Based
on their unique occurrence in one protein in the whole database, certain peptides (unique peptides, colored red and blue) can be tracked
back to their corresponding proteins and thus permit reliable protein identification. Nonunique peptides (gray) cannot be used to uniquely
identify a protein, but these data are used in the calculation of protein coverage and abundance measures. The identified proteins are
placed back into the genomic context of the organisms they are derived from to allow for the biological mining of the data. Adapted

from VerBerkmoes et al. (2009).

populations under stress due to the overall health of a sys-
tem. Given the relatively novel nature of metabolomics,
particularly in environmental sciences, very few databases
exist to facilitate identification of environmental metabo-
lites. Common databases consist of the Human
Metabolome Database and Kyoto Encyclopedia of Genes
and Genomes; commonly used databases can be found at
http://www.metabolomicssociety.org/databases.

21.7 BIOINFORMATION

21.7.1 Bioinformatics and Analysis of Marker
Gene Data

21.7.1.1 16S ¥RNA and Other Marker Genes

As discussed in Chapter 13, marker genes, such as ribosomal
RNA (rRNA) genes or the internal transcribed spacer (ITS),
are frequently used to characterize the composition of bacte-
rial, archaeal and fungal communities. Marker genes are
useful because they allow for the relatively rapid characteri-
zation of the composition and diversity of microbial commu-
nities. The 16S rRNA gene is the most commonly used
marker gene for the characterization of Bacteria and Archaea,
while the ITS tends to be favored among microbiologists
for the characterization of fungi. That notwithstanding, the

18S rRNA and 28S rRNA genes are also commonly used
for the characterization of fungal communities, and are
frequently employed as an alternative to the ITS region
when detailed phylogenetic information is needed.

Recall, good marker genes share the characteristics of:

e Ubiquity—the marker should be present in most, if
not all, target species

e Genetic conservation—the sequence of the marker
should be conserved sufficiently that it can be targeted
with PCR primers

e Variability—in combination with genetic conservation,
the marker should also contain regions of sequence that
are variable and allow for differentiation between spe-
cies, among lineages and within populations.

Given these characteristics, marker genes are well
suited to serve as targets for sequence-based community
surveys. Using high-throughput sequencing platforms,
such as 454, Ion Torrent or Illumina, researchers are now
able to generate large quantities of sequence information
allowing them to describe the structure and diversity of
microbial communities of interest.

21.7.1.2 Platforms for Sequence Analysis

Due to the generation of large quantities of marker gene
sequences, there is a subsequent need to analyze and
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FIGURE 21.6 Physiological changes of the dominant bacteria, Leptospirillum group II, in an acid mine drainage biofilm as the biofilm matures.
Figure depicts significant changes in Leptospirillum group II proteins involved in (A) general metabolism, (B) cellular processes and (C) environmental
sensing. Proteins with yellow fill and pathway headings in yellow font (e.g., “Fhs” and “Reverse glycine cleavage system”) were significantly more
abundant in early and intermediate growth stages, and proteins with blue fill and pathway headings in blue font (e.g., “Cyts7,” and “Pentose phosphate
pathway”) were significantly more abundant in late growth stage samples. Proteins labeled in white were detected by proteomics, but did not demonstrate
a biologically relevant abundance pattern. Proteins filled with a gray-checked pattern were not detected or are unknown. From Mueller et al. (2011).
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interpret them. A variety of analysis platforms have been
developed to accommodate this need, many of which are
open-source and/or freeware packages (Table 21.1).
Examples of these include standalone tool sets like
MOTHUR (Schloss et al., 2009) and QIIME (Caporaso
et al., 2010). Others are web-based portals like the
Ribosomal Database Project Pyrosequencing Pipeline (Cole
et al., 2009), VAMPS (http://vamps.mbl.edu/), the Genboree
Microbiome Toolset (Riehle er al., 2012) and PlutoF
(Abarenkov et al., 2010). Many of the web-based portals
feature the functions of MOTHUR and QIIME, some utilize
custom algorithms, and most feature additional platform-
specific analysis modules. One of the biggest advantages of
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analysis packages with the power of larger, institutional ser-
vers. Their main disadvantage, however, is that by being
shared resources, they can be subject to high demand, and
one may sometimes have to wait longer than anticipated for
results to be processed.

Marker gene analysis platforms tend to revolve around
a core set of functions. These include: (1) the conversion
of raw sequence data (i.e., sff or fastq files) into FASTA
format; (2) quality filtering of sequences; (3) separation
of pooled sequences into their originating samples on the
basis of barcode tags; (4) data “reduction” to allow for
increased computational efficiency; and (5) detection of
potentially chimeric reads. Beyond these features, many

web-based platforms is that they link the features of popular

platforms also offer algorithms that:

TABLE 21.1 Common Platforms for Sequence Analysis and Their Capabilities

(1) attempt to

Platform/Package

Website

Features

Data Types Analyzed

Reference

Marker gene analysis

QIIME http://qiime.org Quality filtering, separation of sequence by =~ Marker gene sequences; Caporaso
barcode, OTUs, taxonomic identities, developed for 16S but can be et al., 2010
diversity analyses, between community used with 18S or ITS sequence
comparisons

MOTHUR http://www.mothur.  Quality filtering, separation of sequence by =~ Marker gene sequences; Schloss et al.,

org barcode, OTUs, taxonomic identities, developed for 16S but can be 2009
diversity analyses, between community used with ITS or other marker
comparisons gene sequences

Ribosomal Database  http://rdp.cme.msu. Archive submission portal; quality filtering;  Largely developed to support Cole et al.,

Project edu taxonomic identities; calculation of some 16S analysis; includes 28S 2009
diversity indices database for fungi

VAMPS http://vamps.mbl.edu  Wraps features of QIIME and MOTHUR; 16S rRNA gene sequences Huse et al.,
includes links to data from large projects 2010
like the Human Microbiome Project and the
Microbiome of the Built Environment

Genboree http://genboree.org Web-based platform for QIIME; offers 16S rRNA gene sequences Riehle et al.,

Microbiome Toolset additional custom analysis modules 2012

PlutoF

http://unite.ut.ee/
workbench.php

Quality filtering, separation of sequence by
barcode, OTUs, taxonomic identities

ITS sequences

Abarenkov
etal., 2010

(Meta)genome analysis

IMG and IMG/M

http://img.jgi.doe.gov

Quality filtering; genome and metagenome

Shotgun genomes and

Markowitz

assembly and annotation; comparative metagenomes etal., 2010
analysis of genomes or metagenomes
MG-RAST http://metagenomics.  Quality filtering; taxonomic and functional ~ Shotgun metagenomes, marker ~ Meyer et al.,
anl.gov annotation; no assembly provided gene surveys 2008
CAMERA http://camera.calit2. Quality filtering; metagenome assembly and ~ Shotgun metagenomes, marker Sun et dl.,
net annotation; viral diversity analyses gene surveys for Bacteria, 2011

Archaea and viruses

EBI Metagenomics

https://www.ebi.ac.
uk/metagenomics

Sequence archiving; quality filtering;
taxonomic analysis of 16S reads; functional
annotation

Shotgun genomes, metagenomes,
marker gene surveys

Hunter et al.,
2011



http://vamps.mbl.edu/
http://qiime.org
http://www.mothur.org
http://www.mothur.org
http://rdp.cme.msu.edu
http://rdp.cme.msu.edu
http://vamps.mbl.edu
http://genboree.org
http://unite.ut.ee/workbench.php
http://unite.ut.ee/workbench.php
http://img.jgi.doe.gov
http://metagenomics.anl.gov
http://metagenomics.anl.gov
http://camera.calit2.net
http://camera.calit2.net
https://www.ebi.ac.uk/metagenomics
https://www.ebi.ac.uk/metagenomics

Chapter | 21

minimize errors as a result of sequencing ‘“noise”; (2)
cluster sequences into operational taxonomic units
(OTUs) on the basis of similarity; (3) assign identities to
each sequence through comparison to reference databases;
and (4) perform additional analyses including the calcula-
tion of diversity indices, evaluation of sample-to-sample
similarities and differences, and detection of features that
distinguish one community from another.

21.7.1.3 Quality Criteria

The sequencing process is inherently prone to error (i.e.,
the incorporation of incorrect base calls during sequenc-
ing). Such errors include substitutions made by DNA
polymerases, chimeric sequence formation and the diffi-
culties entailed in reliably reproducing homopolymeric
regions of sequence (Schloss ef al., 2011). Although these
error rates vary among sequencing platforms and tend to
be relatively low, their cumulative effects on marker gene
survey data can alter our perception of microbial commu-
nity diversity. As a result, it iS common to employ a
series of quality filters to the sequence data prior to analy-
sis. These include:

¢ The removal of low quality sequences

As each base is incorporated during a sequencing reac-
tion, a score indicating the quality of each base call is
also generated and recorded into the sequencing record.
The greater the number of errors in a stretch of
sequence, the lower the quality score tends to be.
Sequences can be trimmed according to quality scores,
and this can be done in one of two ways. The first
involves trimming away low-scoring regions of sequence
from each read and retaining what remains. The second
removes entire sequences from a data set on the basis of
average read quality. Typically, sequences with an aver-
age quality score lower than 20 are removed.

From time to time, a base position cannot be called
with certainty. These are known as ambiguous base
calls, and they are indicated in a stretch of sequence
by the letter N (e.g., ATCCN). Sequences containing
ambiguous base calls are indicators of poor sequence
quality (Huse ef al., 2007), and are typically removed
from analysis.

e The removal of sequences that are too long or too
short
Sequences that are very short or very long, relative to
the expected sequence length for a given sequencing
platform, tend to be of lower quality and contain large
numbers of errors (Huse ef al., 2007). As a result,
users typically filter out these sequences. For example,
it is common to remove sequences that are shorter
than 200 bp or longer than 1000 bp from sequence
runs generated on the Roche 454 platform, which
average 450 bp in length.
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e The removal of sequences containing exceptionally
long homopolymers
Homopolymeric runs are regions of sequence in which
the same base call is incorporated multiple times in a
row. The sequence ACGGGGGGGTC, for example,
contains a homopolymer of seven guanine residues.
Although homopolymers do exist in nature, they can
occur erroneously during the sequencing process
(Huse et al., 2007). Some sequencing platforms (the
Roche 454 platform, in particular) have difficulty
reproducing homopolymeric sequences correctly. As a
precaution against spurious homopolymers, most anal-
ysis platforms allow users to define an acceptable
homopolymer length (e.g., a homopolymer limit of
6 is commonly utilized), and filter out sequences
containing longer homopolymeric spans.

* Barcode and primer trimming and the removal of
sequences containing mismatches to their barcode
or primer sequences
High-throughput sequencing platforms offer the ability
to multiplex samples for sequencing. Multiplexing allows
pools of DNA amplicons originating from multiple sam-
ples to be mixed together and sequenced simultaneously.
The incorporation of barcodes into the amplicon
sequences permits them to be sorted bioinformatically
and attributed back to their sample of origin. Barcodes,
also known as tags, are typically short (i.e., 8—12 bp in
length) sequences that can be ligated onto PCR products
after they are produced or incorporated into the sequenc-
ing primer.

Although barcodes provide a means for assigning
reads to their sample of origin, they also represent an
additional opportunity for quality control. Typically,
sequences that contain errors (i.e., incorrect base calls)
in their barcode sequence are considered to be of low
quality and are removed from analysis, although some
protocols will accept one or two mismatches
(Caporaso et al., 2010; Schloss et al., 2011). This is
also true of primer sequences. Once sequences have
been evaluated for barcode and primer mismatches
and pooled by sample of origin, the barcode and
primer sequences are trimmed away.

21.7.1.4 Removal of Chimeras

In Greek mythology, the chimera was described as a monster
that was part lion, part goat and part snake. During the PCR
process, it is possible for DNA polymerase to begin copying
one target, become disrupted and finish its amplification
cycle by picking up copying a second target. The resulting
product is a hybrid of the two original templates and is com-
monly referred to as a chimera, or chimeric sequence
(Figure 21.7). It is estimated that chimeric reads may account
for 5% or more of sequence libraries (Ashelford ez al., 2005),
and the risk for chimera production is potentially problematic
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when one is trying to characterize the composition and diver-
sity of a mixed microbial community.

The detection of chimeras typically involves the com-
parison of each individual read to all others within a
sequence library or a reference database. Those that
appear to have strong similarities to two different and
divergent “parent” sequences are typically flagged as
potential chimeras. Multiple software packages for the
detection of chimeras are available. The earliest ones
were developed for the analysis of small sequence librar-
ies and are generally not capable of analyzing large, high-
throughput sequence libraries [e.g. Pintail (Ashelford
et al., 2005), Chimera Check (Cole er al., 2007),
Bellerophon (Huber et al., 2004)]. Newer packages like
ChimeraSlayer (Haas er al., 2011), UChime (Edgar et al.,
2011) and B2C2 (Gontcharova et al., 2010) are more fre-
quently used for this purpose. Regardless of the chimera
detection package that one chooses, users are cautioned to
consider that the output generated only identifies potential
chimeras. The results should be reviewed in greater detail,
when possible, as “true” (i.e., nonchimeric) sequences can
be flagged incorrectly.

21.7.1.5 The Operational Taxonomic Unit (OTU)
Concept

The concept of a bacterial species can be difficult to
define. Revisions to existing taxonomies are published on
a regular basis with phylogenetic relationships constantly
being redefined on the basis of new molecular informa-
tion (Information Box 21.1). Horizontal gene transfer
between individual bacteria obscures relationships that
are defined on the basis of function, and it is widely
acknowledged by microbiologists that we have only just
begun to characterize and classify the extensive diversity
of microbial species.

With all of this as a background, sequence-based sur-
veys emerged as a means of characterizing individual bac-
teria and microbial communities at large. As a means of
grappling with the questions of how to quickly distinguish
one species from another when many species are present

Parent 1 AATCGCGACCTGTTTAACCGTAGGTC

v

Potential chimera AATCGCGACCTGTGCTACACGGGTA

f

Parent 2

FIGURE 21.7 A chimeric sequence may be generated during the PCR
process when DNA polymerase begins replicating one strand of DNA
and finishes on another. The resulting chimera contains sequence from
one parent template at the 5" end and the other parent template at the 3’
end. The detection of chimeric sequences often involves BLAST-like
searches of reference databases or the other reads produced in the same
sequence library, in an attempt to identify reads that share a high degree
of similarity with multiple “parent” sequences.
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in a given sample, the concept of the operational taxo-
nomic unit (OTU) emerged. DNA—DNA hybridization
studies have long been a gold standard for defining species
similarity, but scientists noticed that bacteria that share
high levels of similarity via DNA—DNA hybridization
also shared a high degree of similarity between their 16S
rRNA gene sequences (Stackenbrandt and Goebel, 1994).
This concept has also been applied to fungi (O’Brien
et al., 2005; Amend et al., 2010), although the ITS region
is typically utilized instead of the small ribosomal subunit.

The OTU is a computational construct that is used to
represent species, and it is heavily utilized in the field of
microbial ecology. OTUs are defined on the basis of
sequence similarity, and typically a 97% sequence simi-
larity cutoff is employed. That is, if two sequences have
97% of their base calls in common over the entire length
of both sequences, they are considered to belong to the
same OTU. OTUs are convenient in that they represent
an entity that can be counted and used as the basis for
diversity estimates (Schloss and Handelsman, 2005), and
they are not tied to known biological diversity (i.e., they

Information Box 21.1 The Evolving Taxonomy of
Microorganisms

One of the challenges for phylogenetic classification of micro-
bial communities and interpretation of these data is the dra-
matic evolution of microbial taxonomy, especially over the past
few decades. For example, one of the most-studied 2,4-D-
degrading bacteria was originally named Alcaligenes eutrophus
JMP134 after its isolation from soil (Don and Pemberton,
1981); however, a search of the literature will find that this bac-
terium has been referred to by multiple names over the past
three decades including;

Alcaligenes eutrophus JMP134
!

Ralstonia eutropha JMP134

4
Wautersia eutropha JMP134

!
Cupriavidus necator JMP134

l
Cupriavidus pinatubonensis JMP134

These changes have occurred as the bacterium and related
organisms have been reclassified in light of new information for
a variety of properties including: lipid; composition; 16S rRNA
gene sequence, DNA—DNA hybridization; and phenotype.
Although these continual changes are improving the taxonomic
classification of microorganisms, they can make it even more
difficult to draw functional inferences for environmental micro-
organisms based solely upon comparison of sequence data for
phylogenetic marker genes (e.g., 16S rRNA) to previously clas-
sified organisms, whose characterization may have been pub-
lished under a different name(s) in the literature.
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can be used to quantify previously undescribed or unchar-
acterized organisms). They also allow large, complex col-
lections of sequence data to be summarized quickly in
text format. However, one of the major downfalls of
OTUs is that without additional characterization, they
lack the ability to convey information about phylogenetic
relationships, or the degree of similarity, shared with
other OTUs. Although all of the sequences that belong to
an OTU are, by definition, closely related to one another
(i.e., 97% sequence similarity is often used as the cutoff
for all sequences within an OTU), the ability to discern
whether “OTU A” and “OTU B” are similar to one
another can quickly become lost.

21.7.1.6 Diversity Analyses

What is diversity? Biological and ecological diversity are
concepts that deal with richness, variability and variety
within the context of an environmental system (i.e., a
defined unit) (see also Chapter 19). This may be genetic
diversity, organism diversity or ecological diversity
(Magurran, 2004). In the context of microbial communities,
we typically consider aspects of all three. Genetic diversity,
often in the form of marker gene sequences, is used as a
proxy to describe organism diversity (i.e., OTUs or spe-
cies), and communities of microorganisms are compared
with one another in an attempt to describe the richness and
variation that exists within and between communities.

Two key concepts contribute to our understanding of
diversity. For the sake of discussion, we will use the
terms “species” and “communities” here, but other enti-
ties (e.g., genes, taxonomic families) could be used in
their place. The first of these concepts is richness, or the
number of different types of species that exist within a
community. This is a relatively easy concept to define,
but in practice it is often difficult to quantify with 100%
certainty, because it is extremely difficult to sample
microbial communities exhaustively.

The second concept that contributes to our understand-
ing of diversity is evenness, a term which describes the
variability of species abundances. An extremely “even”
community is one in which all species are present in simi-
lar proportions. As an example of an even community,
consider an assemblage that contains four species, each of
which accounts for 25% of the individuals (or biomass) in
the community. In contrast, an “uneven” community is
one in which large disparities exist with respect to the rel-
ative abundances of its members. Like the example pro-
vided above, an uneven community could also contain
four species, but in this case, one species accounts for
60% of the community, the second accounts for 30% of
the community, the third accounts for 7% of the commu-
nity and the last accounts for the remaining 3%.

As a means of communicating information about
diversity, the concepts of richness and evenness are often
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communicated as a single value, known as a diversity
index. Multiple diversity indices have been developed
(Information Box 21.2), and each has strengths, weak-
nesses and biases (Magurran, 2004). A full discussion of
these is beyond the scope of this chapter, but some of the
most commonly utilized indices and their applications
will be described here.

Alpha diversity refers to the diversity of a defined
unit, sample, assemblage or habitat (Rosenzweig, 1995),
and it is often described in terms of species or OTU rich-
ness, the Shannon (or Shannon—Weiner) index and/or the
Simpson index. Because indices like Shannon and
Simpson can be biased by disparities in sampling effort
or sample size (Magurran, 2004), it is common to sub-
sample sequence (or OTU) libraries to an even depth
before calculating diversity index values in order to facili-
tate head-to-head comparisons between one’s samples.
Typically, this is accomplished by randomly selecting an
equal number of sequences from each sample in one’s
study prior to the calculation of diversity values.

The Shannon index (H') (Shannon and Weaver, 1949)
is based on information theory and attempts to quantify
the uncertainty surrounding one’s ability to predict, in
advance, the identity of an organism sampled at random
from a dataset (or community). It is based on the idea
that both the number of species in a community and their
relative abundances contribute to the “complexity” of a
community, and thus the likelihood of being able to cor-
rectly predict the identity of an organism randomly sam-
pled from the community. The Shannon index is
calculated as:

H/ = — Zplln Pi

where p; is the proportion of the i™ species in the commu-
nity. This could be species “A,” “B,” “C,” etc. The value
of the proportion of each species in the community multi-
plied by the log of that value is calculated for every spe-
cies in the community, and then summed to generate the
Shannon index score. Natural log, log 2 or log 10 can be
used, but natural log is commonly employed. Although
larger Shannon index values are generally considered to
represent greater levels of diversity, the means by which
the index is calculated make it difficult to interpret
whether changes to the statistic are a result of changes to
richness, evenness or both. Despite this, the Shannon index
is commonly utilized to describe microbial diversity.

Like the Shannon index, Simpson’s index (Simpson,
1949) deals with probabilities. More specifically, it
attempts to define the probability of any two organisms
being drawn from the same community belonging to the
same species. Although defining these probabilities inher-
ently deals with defining the number of species in a com-
munity (i.e., its richness), the Simpson index tends to
have a greater focus on species dominance (i.e., evenness)
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Information Box 21.2 Diversity Indices
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Although diversity can be characterized at multiple levels
(Chapter 19), diversity indices are most frequently used to
describe alpha-diversity and beta-diversity. An introduction to
commonly used diversity indices is provided below, but many
others have been developed and may be encountered in the
literature.

Commonly used alpha-diversity indices include:

Species richness (observed species)—a count of the number of
unique species that occur in a sample or community

Shannon (H')—the Shannon (or Shannon—Wiener) index con-
siders both the number of unique species and their relative
abundances within a sample (Shannon and Weaver, 1949).
Larger values reflect communities with greater species rich-
ness and evenness, while lower numbers reflect communities
with fewer species and/or a very uneven distribution among
them (e.g., one species may account for a very large percent-
age of the community).

Simpson (D)—the Simpson index evaluates the relative abun-
dances of all species in a community, and attempts to define
the probability that any two organisms drawn from the same
community will be of the same species (Simpson, 1949;
Magurran, 2004). Small values of the Simpson index tend to
reflect communities with high richness and low dominance,
and high values reflect communities with (potentially) lower
richness and high dominance (i.e., most of the community
belongs to one or a few species). The Simpson index is often
presented in inverse form (1/D or 1 —D) so that large num-
bers represent increasing evenness and smaller numbers rep-
resent increasing dominance.

Chao I—the Chao I index is a correction factor for observed rich-
ness. It evaluates the number of species that occur once (sin-
gletons) versus those that occur twice (doubletons), and
attempts to estimate the number of species that would be cap-
tured if the entire community could be sampled exhaustively
(Chao, 1984).

than it does on species richness. The Simpson index (D)
is calculated as:

D =¥y

where dominance (D) is calculated as the sum of the
squared proportions of all species in a given community.
Large values of D are typically interpreted to represent
high dominance and low diversity, whereas small values
of D tend to represent lower dominance, higher diversity
communities. Because the interpretation of these values
is not necessarily intuitive, ecologists commonly calcu-
late inverse Simpson (1/D) or subtract Simpson from
1(1—D) to obtain a value that is more easily
interpreted.

Rarefaction—Rarefaction is not an index, but rather a technique
used to assess species richness. It involves plotting the num-
ber of unique species detected versus the number of organ-
isms sampled. The shape of the resulting curve is used to
indicate the “completeness” of a survey. A curve that flattens
and reaches a clear asymptote suggests that the majority of
the diversity in a community has been captured, while one
that maintains a steep slope indicates that more sampling is
needed.

Phylogenetic diversity—also known as Faith’s diversity (Faith,
1992), this index quantifies the total length of the branches
needed to account for a set of taxa on a phylogenetic tree.
Increasing values of the index reflect increasing levels of
diversity within the community being described.

Commonly used beta-diversity indices include:

Serensen index—evaluates the degree of similarity between two
communities by quantifying the number of species shared in
common, relative to the total number of species held in both
communities (Sorensen, 1948). This metric can be used with
presence/absence (i.e., binary) data.

Jaccard index—evaluates the degree of similarity between two
communities by quantifying the number of species shared in
common relative to the sum of the number of species
uniquely held by each community (Jaccard, 1908). This met-
ric can be used with presence/absence data.

Bray—Curtis dissimilarity—Bray—Curtis dissimilarity (Bray and

1957) the Serensen
Calculated the same way, it is allows for quantitative values
(i.e., counts or relative abundances) to be used instead of
binary data.

Unifrac distance—a measurement that reflects the amount of

Curtis, is an extension of index.

branch length shared by two or more communities when their
members are placed on a common phylogenetic tree
(Lozupone and Knight, 2005). The Unifrac distance is equiva-
lent to “1 minus the fraction of shared branch length.”

Once one has described the diversity within a commu-
nity, it is common to want to compare diversity among
communities along gradients (Whittaker, 1960) or sepa-
rated by space and time. This is also known as beta diver-
sity. A typical first step in describing beta diversity is to
calculate the degree of similarity shared between commu-
nities in terms of their species composition, species distri-
bution or both. The terms similarity and distance are
frequently used to describe the degree to which two com-
munities resemble one another, and they are the inverse
of one another (i.e., a similarity of 30% is equivalent to a
dissimilarity or distance of 70%).

Multiple approaches to calculating community similar-
ity exist. As mentioned above, some indices, like the
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Sorensen or Jaccard indices, consider only the presence or
absence of species between two samples. Others, like the
Bray—Curtis distance, Spearman distance, Hellinger dis-
tance, consider species’ presence/absence and relative
abundances. The Unifrac distance (Lozupone and Knight,
2005), a third type of measure, attempts to place commu-
nity similarities and distances in a phylogenetic context,
and quantifies the amount of phylogeny (i.e., branch
length on a common phylogenetic tree) shared between
two communities. Once similarity or dissimilarity values
have been calculated among a set of communities, they
are commonly communicated using ordination plots.
Nonmetric multidimensional scaling (NMDS) and princi-
pal coordinates analysis (PCoA) plots are frequently used
for this purpose (Figure 19.5).

21.7.1.7 Phylogenetic Analyses

Phylogenetic analysis is another route for analyzing
marker gene sequences, especially in the case of 16S
rRNA gene data. The use of the Unifrac metric helps to
place communities in a phylogenetic context by first build-
ing a large phylogenetic tree, and then calculating the
amount of the tree that is shared between two or more
communities. The amount of phylogenetic diversity within
a single sample can also be calculated this way.

From the perspective of single sequences or OTUs,
phylogenetic analysis more typically involves trying to
place a sequence or OTU of interest into phylogenetic con-
text by comparing it with sequences of known origin. This
process is similar to that which is used to generate OTUs:
(1) a collection of sequences is gathered; (2) all sequences
are compared with one another to determine the amount
of sequence similarity that they share with one another;
(3) these distances are interpreted and used to identify
“nearest neighbors” (i.e., closest relatives), and may be
used to construct a phylogenetic tree. This approach is
commonly used to help describe the identity of a sequence
or OTU whose best match in a public database is an uncul-
tured or unclassified bacterium (or archaeaon or fungus).
It has also been used to identify highly novel organisms
and provide justification for the addition of new phyla
(Hugenholtz et al., 1998), and potentially even taxonomic
domains (Wu et al., 2011).

21.7.2 Bioinformatics and Analysis
of Genomic/Metagenomic Data

Common first steps in the analysis of genomic or metage-
nomic data are an assessment of sequence quality and the
removal of low-quality reads. Depending on the down-
stream analyses that will be performed, this can be a very
important step. As each base is incorporated during a
sequencing reaction, a score indicating the quality of each
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base call is also generated and recorded into the sequenc-
ing record. Often, base calls at the 5" and 3’ ends of a
sequence read are of lower quality than those that are
incorporated in the middle. Likewise, overly long or
extremely short reads also tend to be of lower quality,
especially those produced on the 454 platform (Huse
et al., 2007). Quality scores can be used by some assembly
algorithms, but many commonly used assemblers do not
take them into consideration (Mende er al., 2012). As a
result, trimming and quality filtering of raw sequence
reads is often advised, and tends to lead to more accurate
genome and metagenome assemblies (DiGuistini er al.,
2009; Mende et al., 2012).

21.7.2.1 Assembly-Based Approaches

Once a genome or metagenome has been sequenced, it is
much like a jigsaw puzzle (or a collection of many jigsaw
puzzles). It represents a large collection of pieces, some of
which are informative on their own, and others of which
yield better information and a more complete picture once
they are assembled and placed in context with other frag-
ments. Also like a jigsaw puzzle, genome and metage-
nomic sequence data may contain pieces (i.e., sequence
fragments) that are duplicated, misshapen (i.e., contain
errors) or missing. These add to the challenge of sequence
assembly and interpretation, but they do not preclude it
completely.

During the assembly process, fragments of sequence
that originated from the same parent sequence are identi-
fied, and ordered relative to one another to build a larger,
contiguous strand of sequence, also known as a contig.
Contigs are typically constructed by identifying regions
of common, overlapping sequence that are shared
between the two smaller sequence fragments. Depending
on the sequencing approach used, spatial information
(i.e., known distances between fragments) may also be
available to aid in the assembly process, and provide a
degree of quality control. For example, if it is known that
the ends of two different fragments should be oriented
1000 bp apart from one another, the distance can be used
as a placeholder, which helps to constrain (i.e., control)
the addition of new sequences and contigs. As multiple
contigs are joined into longer and longer sequences, scaf-
folds are formed. Scaffolds are not necessarily contiguous
runs of sequence, but can include gaps of known length.
Depending on the complexity of the sample and the depth
to which it is sequenced, assembly from metagenomic
sequencing can yield high-quality draft, or even complete
genome sequences.

Multiple approaches and software packages have been
developed for the purpose of sequence assembly. The ear-
liest assemblers were designed to piece together single
genomes with fragments of relatively long read length. As
the high-throughput sequencing of shorter gene fragments



500

and the sequencing of mixed communities (i.e., metagen-
omes) became more common, newer assemblers designed
to handle greater levels of complexity were developed
[e.g., Velvet (Zerbino and Birney, 2008), SOAP (Li et al.,
2010)].

Regardless of the sequence data or assembly algorithm
used, the assembly process can be quite computationally
intensive. As a result, preprocessing algorithms have
emerged to help reduce the complexity and redundancy
of the input data, and reduce the computational load
required to complete the assembly (Pell er al., 2012). This
is particularly important in complex and highly diverse
communities, such as those found in soil, where large
amounts of sequence data must be generated in order to
provide adequate coverage of the community.

21.7.2.2 Mapping to Reference Genomes

A reference genome, also known as a reference assembly,
is a collection of nucleic acid sequence and annotation
information describing the gene content of an organism.
The nucleic acid sequences may be assembled (i.e.,
pieced together from smaller sequence fragments) into
contigs, scaffolds or complete chromosomes. Often, open
reading frames (ORFs) for individual genes will be identi-
fied, and attempts will be made to annotate or assign an
identity and/or function to each of the ORFs.

Reference genomes play an important role in shaping
our interpretation of new genomes and metagenomic data.
Just as the “reference” portion of their name implies, refer-
ence genomes can serve as a framework for describing the
gene content—both in terms of taxonomic origin and
potential function—of new genomes and metagenomes. A
common step in analyzing shotgun sequence datasets, like
metagenomes, is to “map” the unassembled reads to a col-
lection of reference genomes. This can be done using
BLAST searches, but fast, memory-efficient alignment
algorithms, such as bowtie (Langmead et al., 2009) or
BWA (Li and Durbin, 2010), are more commonly used for
this purpose. The mapping algorithms search for regions of
homology (i.e., similarity) between the reference genome
and the sequence of interest. The amount of similarity that
they share, the degree of coverage (i.e., amount of the
genome that generates matches within your pool of shot-
gun sequences) and the depth of coverage (i.e., the number
of copies of each gene or genome found within the shotgun
sequence pool) influence the quality of the amount of
information that can be derived from the “map.”

The mapping of reads to reference genomes can be
used to identify and remove host-derived reads if the com-
munity of interest has come from a plant, animal or insect
host. By mapping metagenomic reads from various body
sites sampled during the Human Microbiome Project to a
reference (human) genome, it was discovered that human-
derived reads accounted for approximately 1% of the
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sequences generated from stool, but 80% of more of the
sequences generated from samples of saliva, the anterior
nares (nostril) and vagina (Human Microbiome Project
Consortium, 2012). While the identification and removal
of host “contamination” represents an important applica-
tion of reference genome mapping, the technique can also
be used to evaluate the potential origins of your reads. For
example, by mapping metagenomic sequence reads to ref-
erence genomes, researchers studying a mixed-community,
cellulosic bioreactor system were able to determine that
their reactor harbored a variety of cellulose- and xylose-
degrading bacteria, including Clostridium thermocellum,
Thermoanaerobacterium  thermosaccharolyticum  and
Moorella thermoacetica (Hollister et al., 2012). They also
learned that their reactor-housed bacteria shared some sim-
ilarity with previously sequenced Bacillus spp.; however,
the degree of similarity was low enough and the maps
sparse enough to suggest that they had encountered novel,
or at least unsequenced, species.

Historically, collections of reference genomes have
been biased toward the inclusion of model organisms,
pathogens and other organisms of economic or biotechno-
logical importance, but in recent years, large-scale
sequencing projects like the Human Microbiome Project
(HMP) (Nelson et al., 2010) and the Genomic
Encyclopedia of Bacteria and Archaea (GEBA) (Wu
et al., 2009) have increased the scope and size of refer-
ence genome collections, systematically generating new
genome sequences in the attempt to fill out the underrep-
resented portions of the microbial tree of life. They have
utilized innovative isolation and culture techniques (Pope
et al., 2011), single cell sequencing (Rinke et al., 2013)
and in some cases assembly from metagenome sequences
(Hess et al., 2011).

Since the first bacterial genome (Haemophilus influ-
enza) was sequenced in the mid-1990s (Fleischmann et al.,
1995), the collection of publicly available reference gen-
omes has grown to include > 6000 high-quality draft or
completed bacterial and archaeal reference genomes
and > 300 eukaryotic reference genomes (Genomes
Online Database, http://www.genomesonline.org, July
2013). A recent evaluation of the publically available ref-
erence genome collection found that the addition of new
genomes as a result of the Human Microbiome Project ref-
erence genome sequencing initiative resulted in a 20—40%
improvement in read recruitment from human metagen-
ome samples than would have been possible previously
(Nelson et al., 2010). Likewise, the recent release of > 200
genomes generated by single cell sequencing is estimated
to have increased the phylogenetic coverage of publically
available reference genomes by >11% (Rinke et al.,
2013). Although this growth is impressive, much more
work remains to be done (Fodor ef al., 2012). Our under-
standing and appreciation of the microbial world is funda-
mentally linked to the information contained in reference
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genome collections, and it is anticipated that continued
efforts to expand these collections will provide new insight
into microbial structure, function and evolution.

21.7.2.3 Databases

As the ability to generate genome and metagenome
sequence data has grown, so too has the need to analyze,
store and share it. Even as improved algorithms for
sequence assembly and annotation are developed, the
archiving, analysis and dispersal of genome and metage-
nomic sequence data is no trivial task. Powerful servers
with large storage capacity are typically required to han-
dle the data associated with these large and ever-growing
projects. These resource requirements are often greater
than individual academic laboratories can support, but
centralized databases and similar repositories also serve a
valuable purpose in their ability to facilitate the sharing
of data within the scientific community.

A variety of databases have been developed with these
needs in mind. Some, like the Sequence Read Archive
(SRA) at the National Center for Biotechnology
Information (NCBI) or the European Nucleotide Archive
(ENA) at the European Molecular Biology Laboratory,
house compressed versions of the raw (or sometimes
assembled) sequence data and associated metadata from
genome and metagenomic sequencing projects. Others,
like the Integrated Microbial Genomes and Metagenomes
(IMG) system (Markowitz et al., 2010), MG-RAST
(Meyer et al., 2008), CAMERA (Sun et al., 2011) and the
EBI Metagenomics service (https://www.ebi.ac.uk/meta-
genomics/), will house data, but also allow users to
upload genome or metagenomic sequence data and ana-
lyze it. Common options offered by these platforms often
include sequence assembly, annotation and the ability to
carry out comparative analyses.

In addition to the archiving and analysis of genome
and metagenome data, the rapid growth of genomic and
metagenomic sequencing projects had led to the need to
track and catalogue them. Despite the fact that the costs
associated with generating sequence have declined, stor-
age and dissemination of data still remain a challenge,
and preventing the duplication of projects can help to
reduce these burdens. The Genomes OnLine Database
(GOLD) (Pagani et al., 2012), first established in 1997,
has emerged to fill this need. GOLD serves as a central
repository for information about sequencing projects,
including genomes and metagenomes, as well as genome
resequencing projects, single cell sequencing projects and
(meta)transcriptomes. Information catalogued in GOLD
includes project type, sequencing status (e.g., targeted, in
progress, complete), project metadata, organism phylog-
eny and contact information for the scientist or research
group leading the project efforts.
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21.7.3 Integration of ’'Omics Data

The ability to generate multiple 'omics datasets from the
same system, at the same point in time, has the potential
to provide a highly detailed picture of the system’s biology
and ecology. Efforts to integrate multiple’omics technolo-
gies with one another are still relatively few, especially in
mixed microbial communities, and they often rely on the
layering of ’omics data onto reference pathways or the
correlation of one "omics data set with another.

21.7.3.1 Layering of -Omics Data Using Reference
Databases

Reference databases, such as the Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa er al., 2012),
BioCyc and MetaCyc (Caspi et al., 2012), provide
curated, and often experimentally verified, information
regarding metabolic pathways, and the enzymes, reac-
tions, compounds and genes that allow them to function.
Although many metabolic pathways occur commonly
across the Tree of Life, these reference databases also
include information regarding the (known) taxonomic dis-
tribution of particular genes and pathways.

Reference databases like KEGG and MetaCyc can
serve as a platform to support the exploration of ’omics
data, and new software tools are emerging to allow these
databases to serve as a platform for ’omics integration.
The KEGG database can be accessed directly through a
web-based interface (http://www.genome.jp/kegg/), allow-
ing users to explore genes, compounds and pathways, or
to input information about differentially detected genes
and compounds to assess which functional pathways may
be affected. Likewise, the interactive Pathways Explorer
(iPath, http://pathways.embl.de/) is a web-based tool that
allows for the visualization, analysis and customization of
pathway information, and the Pathview package (Luo and
Brouwer, 2013) is a standalone package for multi-’omics
integration.

The value of multiple-’omics datasets is often real-
ized in the ability of one data type to confirm or refute
the results of another. For example, following the
Deepwater Horizon oil spill in the Gulf of Mexico in
2010, Mason et al. (2012) used a combination of meta-
genomic, metatranscriptomic and single-cell genomic
sequencing to characterize microbial community
responses. The shotgun metagenomic sequencing
results revealed that, relative to the microbial commu-
nities inhabiting uncontaminated seawater, the
hydrocarbon-exposed communities were significantly
enriched in genes related to motility, chemotaxis and
aliphatic hydrocarbon degradation, as well as the degra-
dation of more recalcitrant compounds, including ben-
zene, toluene and polycyclic aromatic hydrocarbons
(see also Chapter 31). Analysis of the transcriptome of
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these communities confirmed that the expression of
the chemotaxis, motility and aliphatic hydrocarbon de-
gradation  genes was  significantly  enhanced.
Surprisingly, though, the transcriptomic analysis found
that the expression of genes related to the degradation
of the more recalcitrant compounds had not changed,
demonstrating that although differences in gene abun-
dance profiles can provide strong clues about how a
system works, the addition of transcriptomic and/or
metabolomic data can be important to pinpoint which
genes, compounds and metabolites are actually being
used.

21.7.3.2 Correlation and Network-Based
Approaches

The layering of ’omics data onto reference pathways
allows for the exploration of these datasets in the context
of known, well-characterized reactions and pathways. In
the case of multi-’omics studies, it allows functionally
related data types (e.g., genes and compounds involved in
the same reaction) to be considered in the context of
known biology and biochemical reactions. While layering
approaches can be very useful, they are not necessarily
designed to convey global patterns and relationships
within and between ’omics datasets.

In contrast, correlation and network-based
approaches can be employed to identify co-occurrence
and/or co-abundance patterns within and between
’omics datasets. Correlation and network-based
approaches are relatively simple, and are often naive to
the errors inherent in ’omics measurements, and the
biology that they are being used to describe. These
approaches often employ Pearson or Spearman correla-
tions and can be as simple as asking, “Does gene ‘A’
occur with similar abundances as genes ‘B’ and ‘C’ or
metabolite ‘D’ across all of my samples, or do some
bacteria always (or never) occur together in my sam-
ples?” While these may seem like simple questions, the
potential does exist for correlations to identify artifacts
of the data rather than true biological relationships
(Friedman and Alm, 2012). As such, more sophisticated
methods for examining correlations have been pro-
posed. These include partial least squares regression
(Pir et al., 2006), sparse correlations for compositional
data (Friedman and Alm, 2012) and generalized
boosted linear models (Faust ef al., 2012).

Despite the potential pitfalls of correlation-based
analyses, they have been used with success in many stud-
ies, and have the potential to reveal new insights into the
biology of a system of interest. For example, within-
’omic (i.e., analyses using a single-’omic technology)
correlations have been used to assign functional context
to genes of unknown identity (Wang er al., 2012;
Buttigieg et al., 2013), identify genes, metabolites or
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bacteria that are associated with, or characteristic of, eco-
logical or environmental subtypes (Bhavnani ef al., 2011;
Barberan et al., 2012; Greenblum et al., 2012), and pro-
vide insight into the culture of previously uncultivable
organisms (Duran-Pinedo et al., 2011). Examples of
cross-’omic (i.e., multi-’omic) correlations are fewer in
number, but recent attempts to integrate transcriptome
and metabolite datasets from laboratory chemostats (Pir
et al., 2006) and metabolites and community composition
in the human gut (McHardy er al., 2013) have been
described in the literature. The integration of mixed
’omics datasets is considered to be at the forefront of
science and has tremendous potential for characterizing
environmental microorganisms; however, it represents
a technological challenge that remains to be fully
resolved, especially for the study of complex microbial
communities.

QUESTIONS AND PROBLEMS

1. Discuss the potential advantages and disadvantages of
the various omics approaches for characterizing envi-
ronmental microorganisms.

What is the value of reference genomes?

3. What kind(s) of information can be learned from 16S
rRNA gene sequences? From genomic or metage-
nomic sequencing?

4. Which ’omics approach provides the most direct indi-
cation of microbial activity.

5. Discuss the major quality criteria used for processing
DNA sequence data.

6. What is microbial diversity? How can it be deter-
mined using *omics -based approaches?

7. Discuss the major limitations of ’omics approaches
for studying microbial community diversity.

g
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